
Persistency Tutorial

0.1 (18/07/03)

by Dieter Wimberger

1. General
Persistency should basically provide you with means to persist collections of Contact and
ContactGroup instances.

Note:
This database might also be called an "Address Book", so if you are interested in something alike, don't miss the following.
Read on!

Persistency is modeled by the generic net.wimpi.pim.contact.db package. This package
contains six interfaces defining the contract for implementations:

1. net.wimpi.pim.contact.db.ContactDatabase: For the contact database
2. net.wimpi.pim.contact.db.ContactCollection: For a collection of Contact instances
3. net.wimpi.pim.contact.db.ContactGroup: For groups of contacts
4. net.wimpi.pim.contact.db.ContactGroupCollection: For a collection of ContactGroup

instances
5. net.wimpi.pim.contact.db.ContactFilter: For a filter that is capable of filtering Contact

instances
6. net.wimpi.pim.contact.db.ContactGroupFilter: For a filter that is capable of filtering

ContactGroup instances

Available implementations reside in subpackages of the same package; for the moment there
is only a Serialization based implementation (see net.wimpi.pim.contact.db.serializable).

The basic way you can utilize a ContactDatabase should be fairly the same for any
implementation:

The first step is to obtain the factory. At the moment you will only be able to obtain the
default factory (the SerializableContactDBFactory); however, it is likely that in the future
you can state a flavor when obtaining the factory instance:
ContactDBFactory cdbf = Pim.getContactDBFactory();

Page 1
Copyright © 2001-2003 jpim Development Team All rights reserved.



Then you can create ContactDatabase instance using the respective factory method:
ContactDatabase ctdb = cdbf.createContactDatabase();

Now you can add Contact and ContactGroup instances to the ContactDatabase, list them
(with and without filters etc.). Please see the API Documentation for more information on the
operations.

Group instances can also be obtained from the ContactDBFactory:
ContactGroup group = ctdb.createContactGroup();

Note:
Implementations will differ most in the way you store and load the database instances. Please see the corresponding sections
for more detail on implementations.

2. The Serializable Database
jpim contains a ContactDatabase implementation, that is serializable. It can be stored and
retrieved (from and to streams) using the standard Java serialization mechanism.

2.1. Storing a Database Instance

You can serialize the database to any type of OutputStream instance:

FileOutputStream fout = new FileOutputStream(ctdb.getUID() + ".ser");
ObjectOutputStream out = new ObjectOutputStream(fout);
out.writeObject(ctdb);

2.2. Loading a Database Instance

You can de-serialize the database from any type of InputStream instance:

FileInputStream fin = new FileInputStream(filename);
ObjectInputStream in = new ObjectInputStream(fin);
ContactDatabase ctdb = (ContactDatabase) in.readObject();

Note:
Extensions will be properly serialized and de-serialized, if they are Serializable. The SimpleExtension implementation is an
example.

Persistency Tutorial

Page 2
Copyright © 2001-2003 jpim Development Team All rights reserved.


	Persistency Tutorial
	1 General
	2 The Serializable Database
	2.1 Storing a Database Instance
	2.2 Loading a Database Instance



